The “good” Boussinesq equation on the half-line
نویسندگان
چکیده
منابع مشابه
Pseudospectral Method for the " Good " Boussinesq Equation
We prove the nonlinear stability and convergence of a fully discrete, pseudospectral scheme for the "good" Boussinesq equation un = -uxxxx + uxx + ("2)xx ■ Numerical comparisons with finite difference schemes are also reported.
متن کاملThe derivative nonlinear Schrödinger equation on the half-line
We analyze the derivative nonlinear Schrödinger equation iqt + qxx = i ( |q|q ) x on the half-line using the Fokas method. Assuming that the solution q(x, t) exists, we show that it can be represented in terms of the solution of a matrix Riemann-Hilbert problem formulated in the plane of the complex spectral parameter ζ. The jump matrix has explicit x, t dependence and is given in terms of the ...
متن کاملThe Generalized Korteweg-de Vries Equation on the Half Line
The initial-boundary value problem for the generalized Korteweg-de Vries equation on a half-line is studied by adapting the initial value techniques developed by Kenig, Ponce and Vega and Bourgain to the initial-boundary setting. The approach consists of replacing the initial-boundary problem by a forced initial value problem. The forcing is selected to satisfy the boundary condition by inverti...
متن کاملEstimate for the Schrödinger Equation on the Half - Line ∗
In this paper we prove the L p − L ´ p estimate for the Schrödinger equation on the half-line and with homogeneous Dirichlet boundary condition at the origin.
متن کاملThe Derivative Nonlinear Schrödinger Equation on the Half Line
We study the initial-boundary value problem for the derivative nonlinear Schrödinger (DNLS) equation. More precisely we study the wellposedness theory and the regularity properties of the DNLS equation on the half line. We prove almost sharp local wellposedness, nonlinear smoothing, and small data global wellposedness in the energy space. One of the obstructions is that the crucial gauge transf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2015
ISSN: 0022-0396
DOI: 10.1016/j.jde.2015.01.005